

US009586103B2

(12) United States Patent

Honea et al.

(54) GOLF CLUB HEAD AND GOLF CLUB

- (71) Applicant: TAYLOR MADE GOLF COMPANY, INC., Carlsbad, CA (US)
- (72) Inventors: Justin Honea, Richardson, TX (US); Tim Reed, McKinney, TX (US); John Kendall, Wylie, TX (US)
- (73) Assignee: TAYLOR MADE GOLF COMPANY, INC., Carlsbad, CA (US)
- (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 43 days.
- (21) Appl. No.: 14/878,131
- (22) Filed: Oct. 8, 2015

(65) **Prior Publication Data**

US 2016/0023066 A1 Jan. 28, 2016

Related U.S. Application Data

- (63) Continuation of application No. 14/060,948, filed on Oct. 23, 2013, now Pat. No. 9,168,431, which is a continuation of application No. 13/716,437, filed on Dec. 17, 2012, now Pat. No. 8,591,353, which is a continuation of application No. 13/476,321, filed on May 21, 2012, now Pat. No. 8,357,058, which is a continuation of application No. 12/609,209, filed on Oct. 30, 2009, now Pat. No. 8,206,244, which is a continuation-in-part of application No. 11/972,368, filed on Jan. 10, 2008, now Pat. No. 7,632,196.
- (51) Int. Cl.
- *A63B 53/04* (2015.01)
- (52) U.S. Cl. CPC .. A63B 53/0466 (2013.01); A63B 2053/0408 (2013.01); A63B 2053/0412 (2013.01); A63B 2053/0433 (2013.01); A63B 2053/0445 (2013.01)

(10) Patent No.: US 9,586,103 B2

(45) **Date of Patent:** Mar. 7, 2017

(56) **References Cited**

U.S. PATENT DOCUMENTS

411,000 A	9/1889	Anderson
1,133,129 A	3/1915	Govan
1,518,316 A	12/1924	Ellingham
1,526,438 A	2/1925	Scott
1,538,312 A	5/1925	Beat
1,592,463 A	7/1926	Marker
1,658,581 A	2/1928	Tobia
1,704,119 A	3/1929	Buhrke
	33,129 A 3/1915 Govan 18,316 A 12/1924 Ellingham 26,438 A 2/1925 Scott 38,312 A 5/1925 Beat 22,463 A 7/1926 Marker 58,581 A 2/1928 Tobia 04,119 A 3/1929 Buhrke (Continued) Kather Kather	

FOREIGN PATENT DOCUMENTS

CN	2436182	6/2001
DE	9012884	9/1990
	(Con	tinued)

OTHER PUBLICATIONS

Mike Stachura, "The Hot List", Golf Digest Magazine, Feb. 2004, pp. 82-86.

(Continued)

Primary Examiner — Alvin Hunter (74) Attorney, Agent, or Firm — Gallagher & Dawsey Co., LPA; David J. Dawsey; Michael J. Gallagher

(57) **ABSTRACT**

A golf club having a long blade length, large transfer distance, and low forwardly located center of gravity, and all the benefits afforded therefrom.

23 Claims, 22 Drawing Sheets

U.S. PATENT DOCUMENTS

1 070 400 4	8/1024	Wiedemenn
1,970,409 A	0/1934	Continuin
D107,007 S	11/1937	Casimore
2,214,356 A	9/1940	Wettlaufer
2,225,930 A	12/1940	Sexton
2,360,364 A	10/1944	Reach
2,375,249 A	5/1945	Richer
2,460,435 A	2/1949	Schaffer
2.681.523 A	6/1954	Sellers
3 064 980 A	11/1962	Steiner
3 085 804 4	4/1963	Piener
3 166 320 A	1/1065	Onione
2 466 047 A	0/1060	Dadia et el
5,400,047 A	9/1909	Kodia et al.
3,486,755 A	12/1969	Hodge
3,556,533 A	1/1971	Hollis
3,589,731 A	6/1971	Chancellor
3,606,327 A	9/1971	Gorman
3.610.630 A	10/1971	Glover
3.652.094 A	3/1972	Glover
3 672 419 A	6/1972	Fischer
3 692 306 A	0/1072	Glover
3 743 207 1	7/1073	Dennis
2 902 672 A	7/1975	Saharhar
5,895,072 A	7/1973	Schonner
3,897,066 A	7/1975	Belmont
3,976,299 A	8/1976	Lawrence et al.
3,979,122 A	9/1976	Belmont
3,979,123 A	9/1976	Belmont
3.985.363 A	10/1976	Jepson et al.
3.997.170 A	12/1976	Goldberg
4 008 896 A	2/1977	Gordos
4 043 563 A	8/1077	Churchword
4,045,505 A	10/1077	Dalar
4,032,075 A	10/1977	Daly
4,065,133 A	12/19//	Gordos
4,076,254 A	2/1978	Nygren
4,077,633 A	3/1978	Studen
4,085,934 A	4/1978	Churchward
4.121.832 A	10/1978	Ebbing
4.139.196 A	2/1979	Rilev
4 147 349 A	4/1070	leghers
4 1 50 702 A	4/1070	Ualmaa
4,150,702 A	9/1070	C-11-
4,105,076 A	8/19/9	Cella D 1
4,189,976 A	2/1980	Becker
4,193,601 A	3/1980	Reid, Jr. et al.
4,214,754 A	7/1980	Zebelean
D256,709 S	9/1980	Reid, Jr. et al.
4.247.105 A	1/1981	Jeghers
4.262.562 A	4/1981	MacNeill
D259 698 S	6/1981	MacNeill
4 340 220 A	7/1082	Stuff Ir
4,340,223 A	10/1082	Diam
4,411,430 A	1/1084	Dian Chaff In
4,423,874 A	1/1984	Stuff, Jr.
4,431,192 A	2/1984	Stuff, Jr.
4,438,931 A	3/1984	Motomiya
4,489,945 A	12/1984	Kobayashi
4,527,799 A	7/1985	Solheim
4,530,505 A	7/1985	Stuff
D284.346 S	6/1986	Masters
4.592.552 A	6/1986	Garber
4 602 787 A	7/1986	Sugioka et al
4,607,846 A	8/1086	Dorking
4,007,840 A	12/1087	Durate
4,/12,/98 A	12/1987	Preato
4,730,830 A	3/1988	Tilley
4,736,093 A	4/1988	Braly
4,754,974 A	7/1988	Kobayashi
4,754,977 A	7/1988	Sahm
4.762.322 A	8/1988	Molitor et al.
4 787 636 A	11/1988	Honma
4 795 159 A	1/1080	Nagamoto
1,190,109 A	2/1000	Enomoto ot al
4,003,023 A	2/1989	Laura
4,00/,43/ A	9/1989	Lowe
4,867,458 A	9/1989	Sumikawa et al.
4,869,507 A	9/1989	Sahm
4,881,739 A	11/1989	Garcia
4.895.367 A	1/1990	Kajita et al.
4.895.371 4	1/1000	Bushner
1,050,071 A	4/1000	Mullor
ч,910,008 А	4/1990	muner

4,919,428 A	4/1990	Perkins
4,962,932 A	10/1990	Anderson Weahiwama at al
4,994,313 A 5.006.023 A	4/1991	Kaplan
5,020,950 A	6/1991	Ladouceur
5,028,049 A	7/1991	McKeighen
5,039,267 A	8/1991	Wollar
5,050,879 A	9/1991	Sun et al.
5,038,895 A 5,078,400 A	1/1991	Deshiolles et al
5.092.599 A	3/1992	Okumoto et al.
5,116,054 A	5/1992	Johnson
5,121,922 A	6/1992	Harsh, Sr.
5,122,020 A	6/1992	Bedi
5,172,913 A 5,190,289 A	3/1003	Bouquet Nagai et al
5.193.810 A	3/1993	Antonious
5,221,086 A	6/1993	Antonious
5,244,210 A	9/1993	Au
5,251,901 A	10/1993	Solheim et al.
5,253,869 A	10/1993	Dingle et al.
D343 558 S	1/1993	Latraverse et al
5,297,794 A	3/1994	Lu
5,301,944 A	4/1994	Koehler
5,316,305 A	5/1994	McCabe
5,318,297 A	6/1994	Davis et al.
5,320,005 A	0/1994 7/1004	Hsiao
5.340.106 A	8/1994	Ravaris
5,346,217 A	9/1994	Tsuchiya et al.
5,385,348 A	1/1995	Wargo
5,395,113 A	3/1995	Antonious
5,410,798 A	5/1995	Lo T-1
5,419,550 A 5,421,577 A	6/1995	Kobayashi
5.429.365 A	7/1995	McKeighen
5,439,222 A	8/1995	Kranenberg
5,441,274 A	8/1995	Clay
5,447,309 A	9/1995	Vincent
5,449,260 A	9/1995	Whittle
5 482 280 A	1/1995	Yamawaki
5,511,786 A	4/1996	Antonious
5,518,243 A	5/1996	Redman
5,533,730 A	7/1996	Ruvang
5,558,332 A	9/1996	Cook Illinko et el
5 564 705 A	10/1996	Kobayashi et al.
5.571.053 A	11/1996	Lane
5,582,553 A	12/1996	Ashcraft et al.
5,613,917 A	3/1997	Kobayashi et al.
D378,770 S	4/1997	Hlinka et al.
5,020,379 A	4/1997 4/1007	Borys Lo et al
5.629.475 A	5/1997	Chastonay
5,632,694 A	5/1997	Lee
5,632,695 A	5/1997	Hlinka et al.
5,658,206 A	8/1997	Antonious
5,669,827 A	9/1997	Nagamoto
5,683,309 A	11/1997	Bland
5,695,412 A	12/1997	Cook
5,700,208 A	12/1997	Nelms
5,709,613 A	1/1998	Sheraw
5,718,641 A	2/1998	Lin
5,720,074 A	2/1998	Galy
5.746.664 A	5/1998	Revnolds, Jr.
5,755,627 A	5/1998	Yamazaki et al.
5,759,114 A	6/1998	Bluto et al.
5,762,567 A	6/1998	Antonious
5,766,095 A	6/1998	Antonious
5,769,737 A	6/1998	Holladay et al.
5,776,010 A	7/1998	Helmstetter et al.
5,775,609 A	7/1998	Su et al.
5,788 587 A	8/1008	Tseng
5,798.587 A	8/1998	Lee
,,		

U.S. PATENT DOCUMENTS

DE26 OFF E	11/1000	τ
KE33,933 E	11/1998	Lu
5,851,160 A	12/1998	Rugge et al.
5 876 203 4	3/1000	Musty
5,070,200 11	2/1000	Chine 1-1
5,885,100 A	3/1999	Shiraishi
5,890,971 A	4/1999	Shiraishi
D400 463 S	5/1000	McMullin
5 000 255	6/1000	N
5,908,356 A	6/1999	Nagamoto
5.911.638 A	6/1999	Parente et al.
5 012 735 1	6/1000	Konmi
5,915,755 A	6/1999	
5,916,042 A	6/1999	Reimers
D412.547 S	8/1999	Fong
5 035 010 A	8/1000	Vamamoto
5,955,019 A	0/1999	
5,935,020 A	8/1999	Stites et al.
5.941.782 A	8/1999	Cook
5 047 840 A	0/1000	Duon
5,947,040 A	3/1333	Kyan
5,954,595 A	9/1999	Antonious
5.967.905 A	10/1999	Nakahara et al.
5 071 867 A	10/1000	Galy
5,971,007 A	10/1999	Gaiy
5,976,033 A	11/1999	Takeda
5.997.415 A	12/1999	Wood
6 001 020 1	12/1000	Kabayashi
0,001,029 A	1/2000	Robayashi
6,015,354 A	1/2000	Ahn et al.
6.017.177 A	1/2000	Lanham
6 010 686 1	2/2000	Gray
0,019,080 A	2/2000	Glay
6,023,891 A	2/2000	Robertson et al.
6.032.677 A	3/2000	Blechman et al.
6 022 218 A	2/2000	Draian Ir at al
0,055,518 A	3/2000	Diajan, Ji. et al.
6,033,319 A	3/2000	Farrar
6.033.321 A	3/2000	Yamamoto
6 048 278 1	4/2000	Meyer et al
C 05C C 40 A	5/2000	
6,056,649 A	5/2000	Imai
6,062,988 A	5/2000	Yamamoto
6 074 308 A	6/2000	Domas
C 077 171 A	C/2000	Veneration
0,077,171 A	0/2000	roneyama
6,083,115 A	7/2000	King
6.089.994 A	7/2000	Sun
6 002 112 A	7/2000	Mortons
0,095,115 A	7/2000	wichtens
6,123,627 A	9/2000	Antonious
6.146.286 A	11/2000	Masuda
6 140 533 A	11/2000	Finn
C1C2 122 A	12/2000	T IIII
0,102,132 A	12/2000	roneyama
6,162,133 A	12/2000	Peterson
6 168 537 B1	1/2001	Fzawa
6 171 204 D1	1/2001	Ezawa Ctarma
0,1/1,204 BI	1/2001	Starry
6,186,905 B1	2/2001	Kosmatka
6 190 267 B1	2/2001	Marlowe et al
6 102 614 D1	2/2001	Secomete et al
0,193,014 DI	2/2001	Sasamoto et al.
6,203,448 B1	3/2001	Yamamoto
6.206.789 B1	3/2001	Takeda
6 206 700 B1	3/2001	Kubica at al
6,200,790 DI	3/2001	Rubica et al.
6,210,290 BI	4/2001	Erickson et al.
6,217,461 B1	4/2001	Galy
6 238 303 B1	5/2001	Fite
6 244 074 D1	6/2001	Hanhaum In
0,244,974 DI	0/2001	manuerry, Jr.
6,248,025 BI	6/2001	Murphy et al.
6.254.494 B1	7/2001	Hasebe et al.
6 264 414 B1	7/2001	Hartmann et al
6,20 7 ,717 D1	0/2001	
6,270,422 BI	8/2001	Fisher
6.277.032 B1	8/2001	Smith
6 200 600 B1	0/2001	Takeda
6 206 570 D1	10/2001	Dalainana
0,290,579 BI	10/2001	Robinson
6,299,547 B1	10/2001	Kosmatka
6.306.048 B1	10/2001	McCabe et al.
6 3 25 7 28 D1	12/2001	Helmstetter et al
0,525,720 DI	1/20.001	Tremisicuel et al.
6,334,817 Bl	1/2002	Ezawa et al.
6,338.683 B1	1/2002	Kosmatka
6340 337 122	1/2002	Hasebe et al
C 249 012 D1	2/2002	Trabelle et al.
0,348,012 BI	2/2002	Efficiences et al.
6,348,013 B1	2/2002	Kosmatka
6.348.014 B1	2/2002	Chiu
6 264 700 D1	4/2002	Ualmatattan -t 1
0,304,788 BI	4/2002	meimstetter et al.
6,371,868 B1	4/2002	Galloway et al.
6 379 264 BI	4/2002	Forzano
C 270 207 D1	4/2002	I JIZANO
0,379,265 BI	4/2002	HIRAKAWA et al.
6,383.090 B1	5/2002	Odoherty et al.
,, . — •		,

6,386,987	B1	5/2002	Lejeune, Jr.
6.386.990	B1	5/2002	Reves et al.
6 300 033	B1	5/2002	Galloway et al
0,390,933	DI	5/2002	Ganoway et al.
6,409,612	BI	6/2002	Evans et al.
6,425,832	B2	7/2002	Cackett et al.
6 434 811	B1	8/2002	Helmstetter et al
6 425 077	DI	8/2002	Helmstetter et al.
0,435,977	DI	8/2002	Heimsteller et al.
6,436,142	B1	8/2002	Paes et al.
6.440.009	B1	8/2002	Guibaud et al.
6 440 010	R1	8/2002	Deshmukh
0,440,010	DI	8/2002	Desimiukii
6,443,851	BL	9/2002	Liberatore
6,458,042	B1	10/2002	Chen
6 4 58 0 44	B1	10/2002	Vincent et al
6 461 240	D1	10/2002	T ih anotana
0,401,249	D2	10/2002	Liberatore
6,464,598	B1	10/2002	Miller
6.471.604	B2	10/2002	Hocknell et al.
6 475 101	D2	11/2002	Durrows
0,475,101	DZ D2	11/2002	Bullows
6,475,102	B2	11/2002	Helmstetter et al.
6.491.592	B2	12/2002	Cackett et al.
6 508 978	B1	1/2003	Deshmukh
6,500,570		2/2003	Desimitakii
0,514,154	ы	2/2003	Finn
6,524,194	B2	2/2003	McCabe
6.524.197	B2	2/2003	Boone
6 524 108	B2	2/2003	Takeda
6,527,198	D2	2/2003	Takeda
6,527,649	BI	3/2003	Neher et al.
6,530,847	B1	3/2003	Antonious
6.530.848	B2	3/2003	Gillig
6 522 670	DI	2/2002	MaCaba at al
0,555,079	DI	5/2005	McCabe et al.
6,547,676	B2	4/2003	Cackett et al.
6.558.273	B2	5/2003	Kobavashi et al.
6 565 448	B 2	5/2003	Cameron et al
6 5 6 5 4 5 2		5/2003	University at al
0,505,452	B2	5/2003	Heimstetter et al.
6,569,029	B1	5/2003	Hamburger
6.569.040	B2	5/2003	Bradstock
6 572 480	B2	6/2003	Miyamoto et al
6,572,465	D2 D2	6/2003	
6,575,845	B2	6/2003	Galloway et al.
6,582,323	B2	6/2003	Soracco et al.
6 592 468	B2	7/2003	Vincent et al
6 602 140	DI	8/2002	Jacobaan
0,002,149	DI	8/2003	Jacobson
6,605,007	BI	8/2003	Bissonnette et al.
6.607.452	B2	8/2003	Helmstetter et al.
6 612 938	B 2	0/2003	Murphey et al
6 6 1 6 5 47		0/2003	Vin sent at al
0,010,547	BZ	9/2003	vincent et al.
6,620,056	B2	9/2003	Galloway et al.
6.638.180	B2	10/2003	Tsurumaki
6 638 183	B2	10/2003	Takeda
6,638,185	D2	11/2003	I and a second
0,041,487	ы	11/2003	Hamburger
6,641,490	B2	11/2003	Ellemor
6.648.772	B2	11/2003	Vincent et al.
6 6 48 773	B1	11/2003	Fuene
6,650,207	Di	11/2003	
0,052,387	BZ	11/2003	Liberatore
6,663,504	B2	12/2003	Hocknell et al.
6.663.506	B2	12/2003	Nishimoto et al.
6 660 571	B1	12/2003	Comeron et al
0,009,571	DI	12/2003	
6,669,577	BI	12/2003	Hocknell et al.
6,669,578	B1	12/2003	Evans
6 669 580	B1	12/2003	Cackett et al
6 676 526	DI	1/2003	Lasahaan
0,070,330	DI	1/2004	Jacobson
6,679,786	B2	1/2004	McCabe
6,716,111	B2	4/2004	Liberatore
6716114	B2	4/2004	Nishio
6 7 10 5 10	D2	4/2004	Cabram
0,719,510	DZ D2	4/2004	Cobzaiu
6,719,641	B2	4/2004	Dabbs et al.
6.719.645	B2	4/2004	Kouno
6 723 002	R1	4/2004	Barlow
6 720 082	D1	5/2004	Marine et al
0,739,982	DZ	5/2004	murphy et al.
6,739,983	B2	5/2004	Helmstetter et al.
6,743.118	B1	6/2004	Soracco
6 740 522	BÎ	6/2004	Forzano
0,172,323	D1	0/2004	
0,757,572	B1	6/2004	Forest
6 7 60 7 60			Murphy et al
0,/38./03	B2	7/2004	muphy et al.
6,758,763	B2 B1	7/2004	Lee
6,758,763 6,773,359	B2 B1 D2	7/2004 8/2004	Lee
6,773,359 6,773,360	B2 B1 B2	7/2004 8/2004 8/2004	Lee Willett et al.
6,773,359 6,773,360 6,773,361	B2 B1 B2 B1	7/2004 8/2004 8/2004 8/2004	Lee Willett et al. Lee
6,758,763 6,773,359 6,773,360 6,773,361 6,776,726	B2 B1 B2 B1 B1 B2 B1 B2	7/2004 8/2004 8/2004 8/2004 8/2004	Lee Willett et al. Lee Sano
6,758,763 6,773,359 6,773,360 6,773,361 6,776,726	B2 B1 B2 B1 B2 B1 B2 B2	7/2004 8/2004 8/2004 8/2004 8/2004	Willett et al. Lee Sano
6,758,763 6,773,359 6,773,360 6,773,361 6,776,726 6,800,038	B2 B1 B2 B1 B2 B2 B2 B2	7/2004 8/2004 8/2004 8/2004 8/2004 10/2004	Willett et al. Lee Sano Willett et al.
6,758,763 6,773,359 6,773,360 6,773,361 6,776,726 6,800,038 6,800,040	B2 B1 B2 B1 B2 B2 B2 B2	7/2004 8/2004 8/2004 8/2004 8/2004 10/2004 10/2004	Willett et al. Lee Sano Willett et al. Galloway et al.
6,758,765 6,773,359 6,773,360 6,773,361 6,776,726 6,800,038 6,800,040 6,805,643	B2 B1 B2 B1 B2 B2 B2 B2 B1	7/2004 8/2004 8/2004 8/2004 8/2004 10/2004 10/2004 10/2004	Kinphy et al. Lee Willett et al. Lee Sano Willett et al. Galloway et al. Lin
6,758,763 6,773,359 6,773,360 6,773,361 6,776,726 6,800,038 6,800,040 6,805,643 6,805,643	B1 B2 B1 B2 B1 B2 B2 B2 B2 B1 B2	7/2004 8/2004 8/2004 8/2004 8/2004 10/2004 10/2004 10/2004	Lee Willett et al. Lee Sano Willett et al. Galloway et al. Lin Namili

U.S. PATENT DOCUMENTS

6.824.475 B2	11/2004	Burnett et al.
6 835 145 B2	12/2004	Teurumaki
6 855 068 D2	2/2005	Antonious
6 960 919 D2	2/2005	Mahafforr at al
6 860 812 D2	2/2005	Ivianancy ci ai.
0,800,823 BZ	3/2003	Lee
6,860,824 B2	3/2005	Evans
6,875,124 B2	4/2005	Gilbert et al.
6,875,129 B2	4/2005	Erickson et al.
6,875,130 B2	4/2005	Nishio
6,881,158 B2	4/2005	Yang et al.
6,881,159 B2	4/2005	Galloway et al.
6,887,165 B2	5/2005	Tsurumaki
6.890.267 B2	5/2005	Mahaffev et al.
6 902 497 B2	6/2005	Deshmukh et al
6 904 663 B2	6/2005	Willett et al
6 023 734 B2	8/2005	Meyer
6 026 610 B2	8/2005	Helmstetter et al
6 060 142 B2	11/2005	Rissonnotto et al.
0,900,142 B2	11/2005	Milliame
0,904,017 B2	11/2005	williams
6,974,393 B2	12/2005	Caldwell et al.
6,988,960 B2	1/2006	Mahaffey et al.
6,991,558 B2	1/2006	Beach et al.
D515,165 S	2/2006	Zimmerman et al.
6,994,636 B2	2/2006	Hocknell et al.
6,997,820 B2	2/2006	Willett et al.
7,004,849 B2	2/2006	Cameron
7,004,852 B2	2/2006	Billings
7,025,692 B2	4/2006	Erickson et al.
7.029.403 B2	4/2006	Rice et al.
7.070.512 B2	7/2006	Nishio
7 070 517 B2	7/2006	Cackett et al
7 077 762 B2	7/2006	Kouno et al
7 007 572 B2	8/2006	Vahu
7 101 280 B2	0/2006	Gibbe et al
7,101,209 B2	11/2006	Trupada at al
7,137,900 BZ	11/2006	Cibba at al
7,137,907 BZ	11/2006	Chos et al.
7,140,974 B2	11/2006	Chao et al.
7,144,334 B2	12/2006	Enters et al.
7,147,573 B2	12/2006	DiMarco
7,153,220 B2	12/2006	Lo
7,163,468 B2	1/2007	Gibbs et al.
7,163,470 B2	1/2007	Galloway et al.
7,166,038 B2	1/2007	Williams et al.
7,166,040 B2	1/2007	Hoffman et al.
7,166,041 B2	1/2007	Evans
7,169,058 B1	1/2007	Fagan
7,169,060 B2	1/2007	Stevens et al.
7,179,034 B2	2/2007	Ladouceur
7,186,190 B1	3/2007	Beach et al.
7.189.169 B2	3/2007	Billings
7.198.575 B2	4/2007	Beach et al.
7.201.669 B2	4/2007	Stites et al.
D543.600 S	5/2007	Oldknow et al.
7.211.005 B2	5/2007	Lindsav
7 214 143 B2	5/2007	Deshmukh
7 223 180 B2	5/2007	Willett et al
D544 030 S	6/2007	Radcliffe et al
7 252 600 B2	8/2007	Murphy et al
7,232,000 BZ	8/2007	Murphy et al.
7,255,054 BZ	0/2007	Muipity et al.
7,207,020 BZ	9/2007	Chao et al.
7,273,423 B2	9/2007	Imamoto
7,278,927 B2	10/2007	Gibbs et al.
7,281,985 B2	10/2007	Galloway
D554,720 S	11/2007	Barez et al.
7,291,074 B2	11/2007	Kouno et al.
7,294,064 B2	11/2007	Tsurumaki et al.
7,294,065 B2	11/2007	Liang et al.
7,303,488 B2	12/2007	Kakiuchi et al.
7,306,527 B2	12/2007	Williams et al.
7,377,860 B2	5/2008	Breier et al.
7.390,266 B2	6/2008	Gwon
7 407 447 B2	8/2008	Beach et al
7 410 4/1 B2	0/2008	Hoffman et al
7 448 062 02	11/2000	Booch at al
7,448,903 B2	11/2008	Deach et al.
7,500,924 B2	3/2009	Yokota

7 520 820	DЭ	4/2000	Dimaraa	
7,520,820	D2 D2	4/2009 5/2000	Linanco	
7,530,901	D2 D2	5/2009	mamoto et al.	
7,530,904	BZ D2	5/2009	Beach et al.	
7,540,811	B2	6/2009	Beach et al.	
7,563,175	B2	7/2009	Nishitani et al.	
7,568,985	B2	8/2009	Beach et al.	
7,572,193	B2	8/2009	Yokota	
7,578,753	B2	8/2009	Beach et al.	
7,582,024	B2	9/2009	Shear	
7,591,737	B2	9/2009	Gibbs et al.	
7,591,738	B2	9/2009	Beach et al.	
7,621,823	B2	11/2009	Beach et al.	
7,632,196	B2 *	12/2009	Reed	A63B 53/0466
				473/324
8.206.244	B2 *	6/2012	Honea	A63B 53/0466
-,,_,_				473/345
8 357 058	B)*	1/2013	Hones	A63B 53/0466
0,557,050	D_{L}	1/2015	11011 0 a	A72/245
9 501 252	D1 *	11/2012	Hanaa	4/3/343 A62D 52/0466
8,391,333	DI.	11/2015	попеа	A03D 33/0400
0.1.60.101	D a #	10/2015		473/345
9,168,431	B2 *	10/2015	Honea	A63B 53/0466
2001/0049310	AI	12/2001	Cheng et al.	
2002/0022535	Al	2/2002	Takeda	
2002/0032075	A1	3/2002	Vatsvog	
2002/0055396	Al	5/2002	Nishimoto et al.	
2002/0072434	A1	6/2002	Yabu	
2002/0123394	A1	9/2002	Tsurumaki	
2002/0137576	A1	9/2002	Dammen	
2002/0160854	A1	10/2002	Beach et al.	
2002/0183130	A1	12/2002	Pacinella	
2003/0032500	Al	2/2003	Nakahara et al.	
2003/0130059	AI	7/2003	Billings	
2003/0220154	A1	11/2003	Anelli	
2003/0220134	A1	5/2004	Beach et al	
2004/0157678	A1	8/2004	Kohno	
2004/0176192	A1	0/2004	Taummala	
2004/01/0103	AI	9/2004	Tsurumaki	
2004/0192403	AI	9/2004	Character al.	
2004/0235584	AI	11/2004	Chao et al.	
2004/0242343	AI	12/2004	Chao et al.	
2005/0101404	AI	5/2005	Long et al.	
2005/0137024	Al	6/2005	Stites et al.	
2005/0181884	A1	8/2005	Beach et al.	
2005/0239575	A1	10/2005	Chao et al.	
2005/0239576	A1	10/2005	Stites et al.	
2006/0009305	A1	1/2006	Lindsay	
2006/0035722	AI	2/2006	Beach et al	
2006/0058112	A 1	3/2006	Haralason et al	
2000/0038112		5/2006	Camaran	
2000/0094333	AI	5/2000	Cameron Chan at al	
2006/0122004	AI	6/2006	Chen et al.	
2006/0154/4/	AI	7/2006	Beach	
2006/0172821	Al	8/2006	Evans	
2006/0240908	Al	10/2006	Adams et al.	
2006/0281581	A1	12/2006	Yamamoto	
2007/0026961	A1	2/2007	Hou	
2007/0049417	A1	3/2007	Shear	
2007/0105646	A1	5/2007	Beach et al.	
2007/0105647	A1	5/2007	Beach et al.	
2007/0105648	Δ1	5/2007	Beach et al	
2007/0105640	A 1	5/2007	Beach et al	
2007/0105650	A1	5/2007	Beach et al.	
2007/0105050	A1	5/2007	Deach et al.	
2007/0105651	AI	5/2007	Beach et al.	
2007/0105652	AI	5/2007	Beach et al.	
2007/0105653	Al	5/2007	Beach et al.	
2007/0105654	A1	5/2007	Beach et al.	
2007/0105655	A1	5/2007	Beach et al.	
2007/0117652	Al	5/2007	Beach et al.	
2007/0275792	A1	11/2007	Horacek et al.	
2008/0146370	Aİ	6/2008	Beach et al.	
2008/0161127	A1	7/2008	Yamamoto	
2008/025/011	A 1	10/2008	Reach et al	
2000/0234911	A 1	10/2008	Deach et al.	
2008/0201/1/	AI	10/2008	nomman et al.	
2008/0280698	AI	11/2008	попman et al.	
2009/0088269	Al	4/2009	Beach et al.	
2009/0088271	A1	4/2009	Beach et al.	
2009/0137338	A1	5/2009	Kajita	
2009/0170632	A1	7/2009	Beach et al.	
2009/0181789	A1	7/2009	Reed et al.	

U.S. PATENT DOCUMENTS

2010/0048316	A1	2/2010	Honea et al.
2012/0225735	A1	9/2012	Honea et al.

FOREIGN PATENT DOCUMENTS

FP	0470488	3/1995
FP	0617987	11/1997
FP	1001175	5/2000
GB	194823	12/1921
IP	03049777 A	3/1991
IP	03151988 A	6/1991
JP	4180778	6/1992
JP	05317465	12/1993
IP	06126004	5/1994
JP	06182004 A	7/1994
JP	06238022	8/1994
IP	06285186 A	10/1994
JP	6304271	11/1994
JP	08117365 A	5/1996
JP	09028844	2/1997
JP	09308717	12/1997
JP	09327534	12/1997
JP	2773009	7/1998
JP	10234902	9/1998
JP	10277187	10/1998
JР	2000014841	1/2000
JP	2000167089 A	6/2000
ЛР	2000288131 A	10/2000
ЛР	2000300701 A	10/2000
JP	2000342721 A	12/2000
ЛЪ	2001054595	2/2001
JP	2001170225	6/2001
JP	2001204856	7/2001
ЛЪ	2001231888 A	8/2001
JP	2001346918	12/2001
ЈР	2002003969	1/2002
ЛР	2002017910	1/2002
JP	2002052099	2/2002
JP	2002248183	9/2002
JP	2002253706	9/2002
JP	2003038691	2/2003
ЛР	2003126311	5/2003
ЛР	2003226952	8/2003
Л	2004174224	6/2004
JP	2004183058	7/2004

JP	2004222911	8/2004
$_{\rm JP}$	2004267438	9/2004
JP	2005028170	2/2005
JP	05296582	10/2005
JP	05323978	11/2005
JP	2006320493	11/2006
JP	4128970	7/2008
JP	2009000281	1/2009
WO	WO8802642	4/1988
WO	WO0166199	9/2001
WO	WO02062501	8/2002
WO	WO03061773	7/2003
WO	WO2004043549	5/2004

OTHER PUBLICATIONS

Mike Stachura, "The Hot List", Golf Digest Magazine, Feb. 2005, pp. 120-130.

Mike Stachura, "The Hot List", Golf Digest Magazine, Feb. 2005, pp. 131-143.

Mike Stachura, "The Hot List", Golf Digest Magazine, Feb. 2006, pp. 122-132.

Mike Stachura, "The Hot List", Golf Digest Magazine, Feb. 2006, pp. 133-143.

Mike Stachura, "The Hot List", Golf Digest Magazine, Feb. 2007, pp. 130-151.

"The Hot List", Golf Digest Magazine, Feb. 2008, pp. 114-139.

"The Hot List", Golf Digest Magazine, Feb. 2009, pp. 101-127. Callaway Golf, World's Straightest Driver: FT-i Driver downloaded from www.callawaygolf.com/ft%2Di/driver.aspx?lang=en on Apr. 5, 2007.

Jackson, Jeff, The Modern Guide to Golf Clubmaking, Ohio: Dynacraft Golf Products, Inc., copyright 1994, p. 237.

Nike Golf, Sasquatch 460, downloaded from www.nike.com/ nikegolf/index.htm on Apr. 5, 2007.

Nike Golf, Sasquatch Sumo Squared Driver, downloaded from www.nike.com/nikegolf/index.htm on Apr. 5, 2007.

Taylor Made Golf Company, Inc. Press Release, Burner Fairway Wood, www.tmag.com/media/pressreleases/2007/011807_burner_ fairway_rescue.html, Jan. 26, 2007.

Taylor Made Golf Company Inc., R7 460 Drivers, downloaded from www.taylormadegolf.com/product_detail.

asp?pID=14section=overview on Apr. 5, 2007.

Titleist 907D1, downloaded from www.tees2greens.com/forum/Uploads/Images/7ade3521-192b-4611-870b-395d.jpg on Feb. 1, 2007.

* cited by examiner

Fig. 1

Fig. 2

Fig. 3

Sheet 3 of 22

Fig. 5

Fig. 8

Fig. 12

Fig. 15

Fig. 16

Fig. 17

Fig. 18

Fig. 22

Fig. 23

PRIOR ART MEASURED DATA	Prior Art Product A	Prise Art Product 8	Price Art Provinst C	Prio: Art Product D	Print Art Prenkint E	Prior Art Product F	Prior Art Product G	Prior Art Product H	Prior Art Product I	Prior Ant Pruduct J	Prior Art Product K	Priox Art Prioduct f.	Prior Art Product M	Prior Act Product N	Prior Art Product O	Prior Art Product P	Prior Art Preduct Q	Prior Auf Product R	Print Art Freukurt S	Prior Art Product T	Average
MOły	2118	2878	2427	1898	2902	2368	2652	2888	3696	3001	2729	2855	2081	2428	2268	3526	2672	3181	2460	2537	2589
Club Moment Arm (CMA)	1.078	5.528	1.024	1.068	1.016	1.129	1 180	1.210	0.837	1.071	1 1 14	0.941	1,202	938.0	0.928	9.928	0.998	1,293	1.091	1,186	1.062
"Abt" Dimension	0.759	0.921	0.780	0.744	3.011	0.931	0.858	0.871	0.883	1.002	0.803	0.848	0.850	0.900	1.057	1 079	1.071	1 008	0.880	1.017	0.918
Biato Longth (SL)	2.800	3.204	2.917	2.812	2.093	2.823	2.874	2.844	2.838	3,110	3 078	3.042	3,192	2.958	2.999	3 181	3.095	3 294	2.898	3.167	3.003

Fig. 30

PRIOR ART MEASURED DATA	Prior Art Product A	Price Ant Pruduct 8	Phot Art Phudest C	Prini: Art Product D	Prior Art Prinduct E	Pthor Are Province F	Prior Ast Praduct G	Frise Act Product H	Princ Art Protuct 1	Prior Art Provinci J	Psior Ast Psinduct H	Pthor Art Province L	Prior Ast Product M	Prior Art Product N	Prior Art Product Q	Prior Art Product P	Prior Ast Product &	Prior Art Product R	Prior Art Preduct 5	Prior Art Product 7	વેપ્પ્લકાર
NSC JIY	2118	2879	2427	1893	2502	2368	2652	2866	2698	3001	2729	2695	2981	2428	2268	2528	2072	3181	2400	2532	2589
Citio Mument Anti (CMA)	1 078	1118	1 024	1.088	1.016	1.129	1.180	1.210	0.827	1.571	1114	0.941	1.202	0.969	6.326	0.928	0.085	1.203	1.001	1 188	3.082
"Ab!" Dimension	0 759	0.921	0 780	0.746	0.911	5,831	0.938	0.871	0.663	1.002	0.983	0.848	0.850	0.900	1.057	1 675	3.073	1 099	0.890	1 9 17	0.918
Slede Longth (BL)	2.800	3.204	2.912	2.822	2.93)	2.823	3.974	2.844	2.930	3.710	3-928	3.042	3,193	2.636	2.969	3.181	3.0%5	3.294	2.898	3.187	3 963
Front to Back Dim (FB)	3.092	3.373	3.092	3 064	2.888	3.182	3.154	S.401	3.314	3 250	3.214	3.268	3.550	3.001	3.020	3.125	3.068	3.477	3 130	3.670	3.187
(FB) / (BL)	1.0546	1.043	1.052	1.085	0.995	1 120	1.097	1 136	1.168	1.058	1.091	1 081	1.112	1.021	1.007	0.982	0.891	1.055	1.080	0.972	1,083

Fig. 31

PRIOR ART MEASURED DATA	Prior Art Product A	Prior Art Product B	Prior Art Phytuct C	Phics Art Preoduct D	Prior Art Product E	Prior Art Product F	Prios Ast Product B	Prior Art Product H	Prior Art Product I	Prior Art Product 3	Prior Art Product K	Prior Art Product L	Prior Art Product M	Prior Art Product N	Prive Art Product D	Prior Art Product P	Pitter Art Product G	Prior Art Product R	Byin Art Product S	Prior Art Product T	Average
MON	2118	2878	2427	1686	2502	2368	2652	2886	2698	3001	2728	2695	2961	2428	2266	2528	2672	3161	2400	2532	2586
Club Moment Arm (CNA)	1.076	1 1 16	1.024	1.068	1 016	1.129	1, 160	1.210	0.827	1.071	1.114	0.941	1.202	0.989	0.928	0.920	0.998	1 293	1.001	1 188	1.062
"Abl" Dimension	0.759	0.921	0.780	0.744	0.911	0.931	0.888	0.871	0.865	1.802	0.895	0.848	0.850	0.900	1.057	1.078	1.071	1.098	0.880	1.017	0.918
Stade Longth (BL)	2.800	3 204	2 912	2.822	2.993	2.823	2.874	2.844	2.838	3.110	3.028	3.042	3,192	2.938	2.999	3.181	3.095	3.294	2.898	3 167	3.003
Front to Back Dim (FB)	3 062	3 373	3 692	3.064	2.688	3.182	3, 154	3.401	3.314	3.290	3.214	3.285	3.550	3 001	3.020	3 125	3.068	3 477	3.130	3.079	3,187
(Abi) / (FB)	0.249	0.273	0 252	0.243	0 310	0.294	0.282	0.256	0.260	0.305	0.278	0.258	0.240	0.300	0.350	0.344	0.349	0.316	0.281	0.330	0.269
Face Closing MOI (MOIfc)	3321	4353	3638	2932	4136	3637	3937	4391	4999	4433	4762	4012	4947	3702	3991	4288	4162	5609	3738	4671	4178

Fig. 32

PRIOR ART MEASURED DATA	Prios Art Product A	Prior Art Product B	Prios Art Product C	Prior Art Product D	Prior Art Product E	Prior Art Product F	Prios Ari Product ©	Price Art Product H	Prior Art Product 1	Frior Ast Product J	Prior Art Product K	Prior Art Product L	Prior Art Product &	Print Ari Psaduci N	Prior Art Product B	Print Att Phoduct P	Prior Art Product Q	Print Art Product R	Prior Act Product 2	Prinx Auf Princlucs T	Average
MOły	2118	2876	2427	1868	2502	2368	2652	2886	2698	3001	3729	2895	2981	2428	3288	2528	2672	3181	2400	2502	2589
Citrib Memorit Ann (CMA)	1.076	1,118	1 024	1,098	1.018	1.120	1.160	1.210	0.827	1.071	1.114	0.941	1202	0.999	0.528	0.928	0.088	1 203	1.001	1.186	1.097
"Ab!" Dimension Blarie Length (SL)	0.759	0.921	0.760	0 744	0.911	0.931	0.888	0.871	0.863	1.002	0.883	0.848	0.850	0.900	1.057	1.876	1 071	1.098	0 880	1.847	0.936
Xi:g	0.827	0.897	6.802 6.624	0.784	0.984	0 813	0.813 0.741	0.851	0.893	0.928	1.045	0.811	0.982	0.875	0.987	1.035	0.933	1.074	0.877	1.114	0.915
Zcg CG angle (CGA)	0.462	0.539	0.495	0.435	0.483	0.503 31.7	0.514	0.600	0.840	0.439 25.4	0.802	0.654 34.3	0.726	0.382 24.1	0.512	0 468	0.468	0 709	0.476	0.680	0.545

Fig. 33

PRIOR ART MEASURED DATA	Prior Art Product A	Prior Art Product B	Prior Art Product C	Prior Art Pradust D	Prior Art Product E	Prios Ast Product F	Prior Art Product B	Prior Art Product H	Prior Art Product I	Prior Art Product J	Prior Art Product K	Prior Art Product I.	Prior Art Proxilict M	Prior Art Praduct N	Priot Art Product B	Prinsr Art Pronsisk:t P	Prior Art Product Q	Prior Art Product R	Prior Art Product S	Prior Art Product T	Аусгада
MOiy	2118	2876	242?	1868	2502	2368	2652	2898	2698	3001	2720	2695	2961	2428	2268	2528	2672	3181	2400	2632	2589
Club Moment Arm (CR8A)	1.076	1.116	1.024	1,069	1.018	1.129	1.160	1.210	0.827	1.071	1.114	0.941	1.202	0.989	0.928	0.628	0.988	1.298	1.901	1,186	1.062
"Ab!" Dimension	0.753	0.921	0.780	0.744	0.911	0.931	0.888	0.871	0.883	1.002	0.893	0 848	0.850	0.300	1.057	1.076	1.071	1.098	0.880	3.917	0.918
Blade Length (BL)	2.800	3.204	2,912	2.822	2.993	2.823	2.874	2.844	2.838	3 119	3.028	3.042	3,192	2.938	2.999	3,181	3.095	3,294	2.898	3.167	3 003
(CMA)/(A6))	1.417	1.212	1.312	1 434	1.114	1 214	1.308	1.389	0.958	1.069	1.247	1 1 1 0	1.414	1.076	0.878	0.863	0.923	<u>i.177</u>	1.137	1.168	1.157

Fig. 34

PRIOR ART MEASURED DATA	Prior Art Product A	Prior Ail Product &	Prior Ari Preduct C	אואור את איטמעכו D	Prior Att Preduct E	Princ Att Product F	Prior Art Product G	Prior Art Prochect H	Price Art Product !	Prior Art Product J	Ptior Art Product K	Psiar Art Product L	Prior Art Product M	Prior Art Prostuct N	Prior Art Product O	Prior Art Product P	Prior Art Product Q	Prior Art Product R	Price Art Product S	Prior Art Pruduct T	Ауыгады
MOly	2118	2878	2427	1898	2502	2368	2652	2686	2698	3001	2728	2685	2951	2428	2268	2528	2672	3181	349.0	2332	2088
Club Moment Arm (GMA)	1.076	1.116	1.024	1.068	1.016	1.122.	1.169	1,210	9.827	1.0/1	3.114	0.941	3.202	0.969	0.928	0.928	0.988	1.293	3.001	1.136	3.062
Yahia Oimonoimo	1700	3 201	0 700	0.243	5.044	0.004	0.000	0.074	0.202	4.000	0.500	0.040	0.950	0.000	+ 062	1.076	1 0.74	(000	0.960	1 1.07	0.049
Rizda (acoth (SI)	2 200	3 204	2 012	2 622	2 953	2 822	2 875	2.8.54	2 9 2 9	2 110	3,029	2 0 4 2	1 102	2 0 19	3.001	2 1 2 1	3.005	2 204	7.905	2 357	1,003
word center (CC)	le and an	haana.	the second s	بهيبيهم	بتثقيم	an a	للتنشيط	متشتشه		بكليتهم	www.	ang	a the second	بتنشيه	a dina	an a	- Alight		the second second	لتشتد	المتنقبت
(Ab(V/EL)	0.271	0.268	0.268	0.284	0.304	0.330	6.309	0.306	0.304	0.322	0.295	0.279	0.286	0.306	0.352	0.338	0.346	0.333	0 304	0.321	0.306

Fig. 35

PRIOR ART MEASURED DATA	Prior Art Pruduct A	Prior Act Product B	Prior Act Product C	Prior art Product D	Frior An Product E	Psiot Art Product P	Frior Art Product 5	Prior Art Product H	Prior Art Praduct 1	Price Art Product J	Prix Art Protoct K	Prior Art Product L	Prine Art Prochect W	Prior Act Pruduct N	Prior Art Product O	Fixer Art Fluduct P	Prior and Product Q	Prior Art Product P	Prior Art Product S	Prior Art Product T	સંપ્રકાર્યક
MOly	2118	2876	2427	1868	2602	2368	2657	3885	2698	\$901	2723	28.95	2091	2428	2298	2528	2672	3:81	2400	2532	2088
	0.82	0.897	0.80	0.000	0.986	0.813	0.813	0.651	0.656	0.020	0.000	Kait.	0 300Z	2.0/0	0.967	0.20	0.953	2.074	2.6.7		0.010
	14.2	1.522	0.000	10.250	0480	100 A	1	0.200	0.040	0.292	0.000		9 7 3 6		****	1425	1	1990		1000	0.000
		{		10.720		<u> </u>			XXXX		-X-X-14		X X		X.X.14			1.1.0	N. STO		
Chip Moment Ann (Center)	1.076	1.116	1.024	3.068	10:6	1,129	1 180	1,210	0.827	1071	1,314	0.641	1.202	0.989	0.928	0.926	0.968	1.295	1,003	186	1.062
												L									
"Ab?" Dimension	0.759	0.923	0.780	0.744	0.913	6.835	9.868	0.871	0.863	1002	0.893	0.848	0.850	0.900	1.097	1 078	1.071	1.098	0.880	1 017	0.818
Eliada Length (EL)	2.800	3.364	2.912	2.622	2.983	2.853	2.874	2 844	2.030	3.110	3.029	3.042	3 132	2.938	2.688	3.101	3.695	3.384	2.890	3,167	3.003
Tranter Distance (30)	0.982	1 027	0.942	0 897	1.05%	0.956	0.963	1 642	4.2457	5.026	1 200	0.992	1 205	0.959	1 1 12	1 138	1 (14)	1 287	0.899	1.259	1 075
	بيهم والم		بتشنئتم	1	متشتنين	للتشتي	بنشنت		سنتثنب	للتتنت	فتتثنيه	بشنتنت	لتتشتد	لتشتنت	يتتنبيه	بتشنينهم				بتتثنيت	الشنتنشا
Club Head Mass (grame)	205.9	208.9	211.5	205.2	210.6	215.3	215.4	215	212	211.5	218.7	211 6	211.9	2:4.3	216	211 5	213.2	217.8	208.3	208.2	212.3
												[
Face Closing MOI (MOIh)	3.121	4353	3036	2832	4136	.3637	3937	4391	4999	44.33	4782	4012	4947	3793	3991	4288	4162	\$509	37.38	4071	4178

Fig. 36

20

25

35

55

GOLF CLUB HEAD AND GOLF CLUB

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 14/060,948, filed on Oct. 23, 2013, which is a continuation of U.S. patent application Ser. No. 13/716,437, filed on Dec. 17, 2012, now U.S. Pat. No. 8,591,353, which is a continuation of U.S. patent application Ser. No. 13/476, 321, filed on May 21, 2012, now U.S. Pat. No. 8,357,058, which is a continuation of U.S. patent application Ser. No. 12/609,209, filed on Oct. 30, 2009, now U.S. Pat. No. 8,206,244, which is a continuation-in-part of U.S. patent 15 application Ser. No. 11/972,368, filed Jan. 10, 2008, now U.S. Pat. No. 7,632,196, the content of which is hereby incorporated by reference as if completely written herein.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

This invention was not made as part of a federally sponsored research or development project.

TECHNICAL FIELD

The present invention relates to the field of golf clubs, namely fairway wood type golf clubs. The present invention is a fairway wood type golf club characterized by a long blade length with a long heel blade length section, while 30 having a small club moment arm and very low center of gravity.

BACKGROUND OF THE INVENTION

Fairway wood type golf clubs are unique in that they are essential to a golfer's course management, yet fairway woods have been left behind from a technological perspective compared to many of the other golf clubs in a golfer's bag. For instance, driver golf clubs have made tremendous 40 of the present invention, not to scale; technological advances in recent years; as have iron golf clubs, especially with the incorporation of more hybrid long irons into golf club sets.

Majority of the recent advances in these golf clubs have focused on positioning the center of gravity of the golf club 45 head as low as possible and as far toward the rear of the golf club head as possible, along with attempting to increase the moment of inertia of the golf club head to reduce club head twisting at impact due to shots hit toward the toe or heel of the club head. Several unintended consequences came along 50 of the present invention, not to scale; with the benefits associated with these advances. The present invention is directed at addressing several of the unintended consequences in the field of fairway wood type golf clubs.

SUMMARY OF INVENTION

In its most general configuration, the present invention advances the state of the art with a variety of new capabilities and overcomes many of the shortcomings of prior methods in new and novel ways. In its most general sense, 60 the present invention overcomes the shortcomings and limitations of the prior art in any of a number of generally effective configurations.

The present invention is a unique fairway wood type golf club. The club is a fairway wood type golf club characterized 65 by a long blade length with a long heel blade length section, while having a small club moment arm and unique weight

distribution, and all the benefits afforded therefrom. The fairway wood incorporates the discovery of unique relationships among key club head engineering variables that are inconsistent with merely striving to obtain a high MOIy using conventional golf club head design wisdom. The resulting fairway wood has a face closing moment of inertia (MOIfc) more closely matched with modern drivers and long hybrid iron golf clubs, allowing golfers to have a similar feel whether swinging a modern driver, the present fairway wood, or a modern hybrid golf club.

Numerous variations, modifications, alternatives, and alterations of the various preferred embodiments, processes, and methods may be used alone or in combination with one another as will become more readily apparent to those with skill in the art with reference to the following detailed description of the preferred embodiments and the accompanying figures and drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

Without limiting the scope of the present invention as claimed below and referring now to the drawings and figures:

FIG. 1 shows a front elevation view of an embodiment of the present invention, not to scale;

FIG. 2 shows a top plan view of an embodiment of the present invention, not to scale;

FIG. 3 shows a front elevation view of an embodiment of the present invention, not to scale;

FIG. 4 shows a toe side elevation view of an embodiment of the present invention, not to scale;

FIG. 5 shows a top plan view of an embodiment of the present invention, not to scale;

FIG. 6 shows a toe side elevation view of an embodiment of the present invention, not to scale;

FIG. 7 shows a front elevation view of an embodiment of the present invention, not to scale;

- FIG. 8 shows a toe side elevation view of an embodiment
- FIG. 9 shows a front elevation view of an embodiment of the present invention, not to scale;
- FIG. 10 shows a front elevation view of an embodiment of the present invention, not to scale;
- FIG. 11 shows a front elevation view of an embodiment of the present invention, not to scale;
- FIG. 12 shows a front elevation view of an embodiment of the present invention, not to scale;
- FIG. 13 shows a front elevation view of an embodiment
- FIG. 14 shows a top plan view of an embodiment of the present invention, not to scale;

FIG. 15 shows a front elevation view of an embodiment of the present invention, not to scale;

FIG. 16 shows a top plan view of an embodiment of the present invention, not to scale;

FIG. 17 shows a top plan view of an embodiment of the present invention, not to scale;

FIG. 18 shows a step-wise progression of an embodiment of the present invention as the golf club head approaches the impact with a golf ball during a golf swing, not to scale;

FIG. 19 shows a step-wise progression of an embodiment of the present invention as the golf club head approaches the impact with a golf ball during a golf swing, not to scale;

FIG. 20 shows a step-wise progression of an embodiment of the present invention as the golf club head approaches the impact with a golf ball during a golf swing, not to scale;

10

30

FIG. 21 shows a top plan view of an embodiment of the present invention, not to scale;

FIG. 22 shows a front elevation view of an embodiment of the present invention, not to scale;

FIG. 23 shows a toe side elevation view of an embodi- 5 ment of the present invention, not to scale;

FIG. 24 shows a top plan view of a prior art conventional fairway wood, not to scale;

FIG. 25 shows a top plan view of a prior art oversized fairway wood, not to scale;

FIG. 26 shows a top plan view of an embodiment of the present invention, not to scale;

FIG. 27 shows a perspective view of an embodiment of the present invention, not to scale;

FIG. 28 shows a perspective view of an embodiment of 15 the present invention, not to scale;

FIG. 29 shows a front elevation view of an embodiment of the present invention, not to scale;

FIG. 30 shows a table of data for currently available prior art fairway wood type golf club heads;

FIG. 31 shows a table of data for currently available prior art fairway wood type golf club heads;

FIG. 32 shows a table of data for currently available prior art fairway wood type golf club heads;

FIG. 33 shows a table of data for currently available prior 25 art fairway wood type golf club heads;

FIG. 34 shows a table of data for currently available prior art fairway wood type golf club heads;

FIG. 35 shows a table of data for currently available prior art fairway wood type golf club heads;

FIG. 36 shows a table of data for currently available prior art fairway wood type golf club heads; and

FIG. 37 is a graph of the face closing moment (MOIfc) versus club length.

DETAILED DESCRIPTION OF THE INVENTION

The fairway wood type golf club of the present invention enables a significant advance in the state of the art. The 40 preferred embodiments of the invention accomplish this by new and novel methods that are configured in unique and novel ways and which demonstrate previously unavailable, but preferred and desirable capabilities. The description set forth below in connection with the drawings is intended 45 merely as a description of the presently preferred embodiments of the invention, and is not intended to represent the only form in which the present invention may be constructed or utilized. The description sets forth the designs, functions, means, and methods of implementing the invention in con- 50 nection with the illustrated to embodiments. It is to be understood, however, that the same or equivalent functions and features may be accomplished by different embodiments that are also intended to be encompassed within the spirit and scope of the invention.

In order to fully appreciate the present invention some common terms must be defined for use herein. First, one of skill in the art will know the meaning of "center of gravity," referred to herein as CG, from an entry level course on the mechanics of solids. With respect to wood-type golf clubs, 60 which are generally hollow and/or having non-uniform density, the CG is often thought of as the intersection of all the balance points of the club head. In other words, if you balance the head on the face and then on the sole, the intersection of the two imaginary lines passing straight 65 through the balance points would define the point referred to as the CG.

4

It is helpful to establish a coordinate system to identify and discuss the location of the CG. In order to establish this coordinate system one must first identify a ground plane (GP) and a shaft axis (SA). First, the ground plane (GP) is the horizontal plane upon which a golf club head rests, as seen best in a front elevation view of a golf club head looking at the face of the golf club head, as seen in FIG. 1. Secondly, the shaft axis (SA) is the axis of a bore in the golf club head that is designed to receive a shaft. Some golf club heads have an external hosel that contains a bore for receiving the shaft such that one skilled in the art can easily appreciate the shaft axis (SA), while other "hosel-less" golf clubs have an internal bore that receives the shaft that nonetheless defines the shaft axis (SA). The shaft axis (SA) is fixed by the design of the golf club head and is also illustrated in FIG. 1.

Now, the intersection of the shaft axis (SA) with the ground plane (GP) fixes an origin point, labeled "origin" in FIG. 1, for the coordinate system. While it is common 20 knowledge in the industry, it is worth noting that the right side of the club head seen in FIG. 1 is the side nearest the bore in which the shaft attaches is the "heel" side of the golf club head; and the opposite side, the left side in FIG. 1, is referred to as the "toe" side of the golf club head. Additionally, the portion of the golf club head that actually strikes a golf ball is referred to as the face of the golf club head and is commonly referred to as the front of the golf club head; whereas the opposite end of the golf club head is referred to as the rear of the golf club head and/or the trailing edge.

A three dimensional coordinate system may now be established from the origin with the Y-direction being the vertical direction from the origin; the X-direction being the horizontal direction perpendicular to the Y-direction and wherein the X-direction is parallel to the face of the golf club 35 head in the natural resting position, also known as the design position; and the Z-direction is perpendicular to the X-direction wherein the Z-direction is the direction toward the rear of the golf club head. The X, Y, and Z directions are noted on a coordinate system symbol in FIG. 1. It should be noted that this coordinate system is contrary to the traditional right-hand rule coordinate system; however it is preferred so that the center of gravity may be referred to as having all positive coordinates.

Now, with the origin and coordinate system defined, the terms that define the location of the CG may be explained. One skilled in the art will appreciate that the CG of a hollow golf club head such as the wood-type golf club head illustrated in FIG. 2 will be behind the face of the golf club head. The distance behind the origin that the CG is located is referred to as Zcg, as seen in FIG. 2. Similarly, the distance above the origin that the CG is located is referred to as Ycg, as seen in FIG. 3. Lastly, the horizontal distance from the origin that the CG is located is referred to as Xcg, also seen in FIG. 3. Therefore, the location of the CG may be easily 55 identified by reference to Xcg, Ycg, and Zcg.

The moment of inertia of the golf club head is a key ingredient in the playability of the club. Again, one skilled in the art will understand what is meant by moment of inertia with respect of golf club heads; however it is helpful to define two moment of inertia components that will be commonly referred to herein. First, MOIx is the moment of inertia of the golf club head around an axis through the CG, parallel to the X-axis, labeled in FIG. 4. MOIx is the moment of inertia of the golf club head that resists lofting and delofting moments induced by ball strikes high or low on the face. Secondly, MOIy is the moment of the inertia of the golf club head around an axis through the CG, parallel to the

Y-axis, labeled in FIG. **5**. MOIy is the moment of inertia of the golf club head that resists opening and closing moments induced by ball strikes towards the toe side or heel side of the face.

Continuing with the definitions of key golf club head 5 dimensions, the "front-to-back" dimension, referred to as the FB dimension, is the distance from the furthest forward point at the leading edge of the golf club head to the furthest rearward point at the rear of the golf club head, i.e. the trailing edge, as seen in FIG. **6**. The "heel-to-toe" dimension, 10 referred to as the HT dimension, is the distance from the point on the surface of the club head on the toe side that is furthest from the origin in the X-direction, to the point on the surface of the golf club head on the heel side that is 0.875" above the ground plane and furthest from the origin in the 15 negative X-direction, as seen in FIG. **7**.

A key location on the golf club face is an engineered impact point (EIP). The engineered impact point (EIP) is important in that is helps define several other key attributes of the present invention. The engineered impact point (EIP) 20 is generally thought of as the point on the face that is the ideal point at which to strike the golf ball. Generally, the score lines on golf club heads enable one to easily identify the engineered impact point (EIP) for a golf club. In the embodiment of FIG. 9, the first step in identifying the 25 engineered impact point (EIP) is to identify the top score line (TSL) and the bottom score line (BSL). Next, draw an imaginary line (IL) from the midpoint of the top score line (TSL) to the midpoint of the bottom score line (BSL). This imaginary line (IL) will often not be vertical since many score line designs are angled upward toward the toe when the club is in the natural position. Next, as seen in FIG. 10, the club must be rotated so that the top score line (TSL) and the bottom score line (BSL) are parallel with the ground plane (GP), which also means that the imaginary line (IL) 35 will now be vertical. In this position, the leading edge height (LEH) and the top edge height (TEH) are measured from the ground plane (GP). Next, the face height is determined by subtracting the leading edge height (LEH) from the top edge height (TEH). The face height is then divided in half and 40 added to the leading edge height (LEH) to yield the height of the engineered impact point (EIP). Continuing with the club head in the position of FIG. 10, a spot is marked on the imaginary line (IL) at the height above the ground plane (GP) that was just calculated. This spot is the engineered 45 impact point (EIP).

The engineered impact point (EIP) may also be easily determined for club heads having alternative score line configurations. For instance, the golf club head of FIG. 11 does not have a centered top score line. In such a situation, 50 the two outermost score lines that have lengths within 5% of one another are then used as the top score line (TSL) and the bottom score line (BSL). The process for determining the location of the engineered impact point (EIP) on the face is then determined as outlined above. Further, some golf club 55 heads have non-continuous score lines, such as that seen at the top of the club head face in FIG. 12. In this case, a line is extended across the break between the two top score line sections to create a continuous top score line (TSL). The newly created continuous top score line (TSL) is then 60 bisected and used to locate the imaginary line (IL). Again, then the process for determining the location of the engineered impact point (EIP) on the face is then determined as outlined above.

The engineered impact point (EIP) may also be easily 65 determined in the rare case of a golf club head having an asymmetric score line pattern, or no score lines at all. In such

embodiments the engineered impact point (EIP) shall be determined in accordance with the USGA "Procedure for Measuring the Flexibility of a Golf Clubhead," Revision 2.0, Mar. 25, 2005, which is incorporated herein by reference. This USGA procedure identifies a process for determining the impact location on the face of a golf club that is to be tested, also referred therein as the face center. The USGA procedure utilizes a template that is placed on the face of the golf club to determine the face center. In these limited cases of asymmetric score line patterns, or no score lines at all, this USGA face center shall be the engineered impact point (EIP) that is referenced throughout this application.

The engineered impact point (EIP) on the face is an important reference to define other attributes of the present invention. The engineered impact point (EIP) is generally shown on the face with rotated crosshairs labeled EIP.

One important dimension that utilizes the engineered impact point (EIP) is the center face progression (CFP), seen in FIGS. 8 and 14. The center face progression (CFP) is a single dimension measurement and is defined as the distance in the Z-direction from the shaft axis (SA) to the engineered impact point (EIP). A second dimension that utilizes the engineered impact point (EIP) is referred to as a club moment arm (CMA). The CMA is the two dimensional distance from the CG of the club head to the engineered impact point (EIP) on the face, as seen in FIG. 8. Thus, with reference to the coordinate system shown in FIG. 1, the club moment arm (CMA) includes a component in the Z-direction and a component in the Y-direction, but ignores the any difference in the X-direction between the CG and the engineered impact point (EIP). Thus, the club moment arm (CMA) can be thought of in terms of an impact vertical plane passing through the engineered impact point (EIP) and extending in the Z-direction. First, one would translate the CG horizontally in the X-direction until it hits the impact vertical plane. Then, the club moment arm (CMA) would be the distance from the projection of the CG on the impact vertical plane to the engineered impact point (EIP). The club moment arm (CMA) has a significant impact on the launch angle and the spin of the golf ball upon impact.

Another important dimension in golf club design is the club head blade length (BL), seen in FIG. **13** and FIG. **14**. The blade length (BL) is the distance from the origin to a point on the surface of the club head on the toe side that is furthest from the origin in the X-direction. The blade length (BL) is composed of two sections, namely the heel blade length section (Abl) and the toe blade length section (Bbl). The point of delineation between these two sections is the engineered impact point (EIP), or more appropriately, a vertical line, referred to as a face centerline (FC), extending through the engineered impact point (EIP), as seen in FIG. **13**, when the golf club head is in the normal resting position, also referred to as the design position.

Further, several additional dimensions are helpful in understanding the location of the CG with respect to other points that are essential in golf club engineering. First, a CG angle (CGA) is the one dimensional angle between a line connecting the CG to the origin and an extension of the shaft axis (SA), as seen in FIGS. **14** and **26**. The CG angle (CGA) is measured solely in the X-Z plane and therefore does not account for the elevation change between the CG and the origin, which is why it is easiest understood in reference to the top plan views of FIGS. **14** and **26**.

A dimension referred to as CG1, seen in FIG. 15, is most easily understood by identifying two planes through the golf club head, as seen in FIGS. 27 and 28. First, a shaft axis plane (SAP) is a plane through the shaft axis that extends from the face to the rear portion of the golf club head in the Z-direction. Next, a second plane, referred to as the translated shaft axis plane (TSAP), is a plane parallel to the shaft axis plane (SAP) but passing through the GC. Thus, in FIGS. **27** and **28**, the translated shaft axis plane (TSAP) may be 5 thought of as a copy of the shaft axis plane (SAP) that has been slid toward the toe until it hits the CG. Now, the CG1 dimension is the shortest distance from the CG to the shaft axis plane (SAP). A second dimension referred to as CG2, seen in FIG. **16** is the shortest distance from the CG to the 10 origin point, thus taking into account elevation changes in the Y-direction.

Lastly, another important dimension in quantifying the present invention only takes into consideration two dimensions and is referred to as the transfer distance (TD), seen in 15 FIG. **17**. The transfer distance (TD) is the horizontal distance from the CG to a vertical line extending from the origin; thus, the transfer distance (TD) ignores the height of the CG, or Ycg. Thus, using the Pythagorean Theorem from simple geometry, the transfer distance (TD) is the hypotenuse of a 20 right triangle with a first leg being Xcg and the second leg being Zcg.

The transfer distance (TD) is significant in that is helps define another moment of inertia value that is significant to the present invention. This new moment of inertia value is 25 defined as the face closing moment of inertia, referred to as MOIfc, which is the horizontally translated (no change in Y-direction elevation) version of MOIy around a vertical axis that passes through the origin. MOIfc is calculated by adding MOIy to the product of the club head mass and the 30 transfer distance (TD) squared. Thus,

MOIfc=MOIy+(mass*(TD)²)

The face closing moment (MOIfc) is important because is represents the resistance that a golfer feels during a swing 35 when trying to bring the club face back to a square position for impact with the golf ball. In other words, as the golf swing returns the golf club head to its original position to impact the golf ball the face begins closing with the goal of being square at impact with the golf ball. For instance, the 40 figures of FIGS. **18**(A), (B), (C), and (D) illustrate the face of the golf club head closing during the downswing in preparation for impact with the golf ball. This stepwise closing of the face is also illustrated in FIGS. **19** and **20**. The significance of the face closing moment (MOIfc) will be 45 explained later herein.

The fairway wood type golf club of the present invention has a shape and mass distribution unlike prior fairway wood type golf clubs. The fairway wood type golf club of the present invention includes a shaft (200) having a proximal 50 end (210) and a distal end (220); a grip (300) attached to the shaft proximal end (210); and a golf club head (100) attached at the shaft distal end (220), as seen in FIG. 29. The overall fairway wood type golf club has a club length of at least 41 inches and no more than 45 inches, as measure in 55 accordance with USGA guidelines.

The golf club head (100) itself is a hollow structure that includes a face positioned at a front portion of the golf club head where the golf club head impacts a golf ball, a sole positioned at a bottom portion of the golf club head, a crown ⁶⁰ positioned at a top portion of the golf club head, and a skirt positioned around a portion of a periphery of the golf club head between the sole and the crown. The face, sole, crown, and skirt define an outer shell that further defines a head volume that is less than 250 cubic centimeters for the present ⁶⁵ invention. Additionally, the golf club head has a rear portion opposite the face. The rear portion includes the trailing edge

of the golf club, as is understood by one with skill in the art. The face has a loft of at least 12 degrees and no more than 27 degrees, and the face includes an engineered impact point (EIP) as defined above. One skilled in the art will appreciate that the skirt may be significant at some areas of the golf club head and virtually nonexistent at other areas; particularly at the rear portion of the golf club head where it is not uncommon for it to appear that the crown simply wraps around and becomes the sole.

The golf club head (100) includes a bore having a center that defines a shaft axis (SA) which intersects with a horizontal ground plane (GP) to define an origin point, as previously explained. The bore is located at a heel side of the golf club head and receives the shaft distal end for attachment to the golf club head. The golf club head (100) also has a toe side located opposite of the heel side. The golf club head (100) of the present invention has a club head mass of less than 230 grams, which combined with the previously disclosed loft, club head volume, and club length establish that the present invention is directed to a fairway wood golf club.

As previously explained, the golf club head (100) has a blade length (BL) that is measured horizontally from the origin point toward the toe side of the golf club head a distance that is parallel to the face and the ground plane (GP) to the most distant point on the golf club head in this direction. The golf club head (100) of the present invention has a blade length (BL) of at least 3.1 inches. Further, the blade length (BL) includes a heel blade length section (Abl) and a toe blade length section (Bbl). The heel blade length section (Abl) is measured in the same direction as the blade length (BL) from the origin point to the vertical line extending through the engineered impact point (EIP), and in the present invention the heel blade length section (Abl) is at least 1.1 inches. As will be subsequently explained, the blade length (BL) and the heel blade length section (Abl) of the present invention are unique to the field of fairway woods, particularly when combined with the disclosure below regarding the relatively small club moment arm (CMA), high MOIy, in some embodiments, and very low center of gravity, in some embodiments, which fly in the face of conventional golf club design engineering.

The golf club head (100) of the present invention has a center of gravity (CG) located (a) vertically toward the top portion of the golf club head from the origin point a distance Ycg; (b) horizontally from the origin point toward the toe side of the golf club head a distance Xcg that is generally parallel to the face and the ground plane (GP); and (c) a distance Zcg from the origin toward the rear portion in a direction orthogonal to the vertical direction used to measure Ycg and orthogonal to the horizontal direction used to measure Xcg.

The present golf club head (100) has a club moment arm (CMA) from the CG to the engineered impact point (EIP) of less than 1.1 inches. The definition of the club moment arm (CMA) and engineered impact point (EIP) have been disclosed in great detail above and therefore will not be repeated here. This is particularly significant when contrasted with the fact that one embodiment of the present invention has a first moment of inertia (MOIy) about a vertical axis through the CG of at least 3000 g*cm², which is high in the field of fairway wood golf clubs, as well as the blade length (BL) and heel blade length section (Abl) characteristics previously explained.

The advances of the present invention are significant because prior thinking in the field of fairway woods has generally led to one of two results, both of which lack the desired high MOIy, or the desired low CG, depending on the embodiment, combined with the other properties of the claimed invention.

The first common trend has been to produce oversized fairway woods, such as prior art product R in the table of 5 FIG. 30, in which an oversized head was used to obtain a relatively high MOIy at the expense of a particular large club moment arm (CMA) value of almost 1.3 inches, which is over 17.5 percent greater than the maximum club moment arm (CMA) of the present invention. Further, this prior art 10 large club moment arm (CMA) club does not obtain the specified desired heel blade length section (Abl) dimension of the present invention. This is particularly illustrative of common thinking in club head engineering that to produce a high MOIy game improvement type product that the club head must get large in all directions, which results in a CG located far from the face of the club and thus a large club moment arm (CMA). A generic oversized fairway wood is seen in FIG. 25. The club moment arm (CMA) has a significant impact on the ball flight of off-center hits. Impor- 20 tantly, a shorter club moment arm (CMA) produces less variation between shots hit at the engineered impact point (EIP) and off-center hits. Thus, a golf ball struck near the heel or toe of the present invention will have launch conditions more similar to a perfectly struck shot. Conversely, 25 a golf ball struck near the heel or toe of an oversized fairway wood with a large club moment arm (CMA) would have significantly different launch conditions than a ball struck at the engineered impact point (EIP) of the same oversized fairway wood.

Generally, larger club moment arm (CMA) golf clubs impart higher spin rates on the golf ball when perfectly struck in the engineered impact point (EIP) and produce larger spin rate variations in off-center hits. The present invention's reduction of club moment arm (CMA) while still 35 obtaining a high MOIy and/or low CG position, and the desired minimum heel blade length section (Abl) is opposite of what prior art designs have attempted to achieve with oversized fairway woods, and has resulted in a fairway wood with more efficient launch conditions including a lower ball 40 spin rate per degree of launch angle, thus producing a longer ball flight.

The second common trend in fairway wood design has been to stick with smaller club heads for more skilled golfers, as seen in FIG. **24**. One basis for this has been to 45 reduce the amount of ground contact. Unfortunately, the smaller club head results in a reduced hitting area making these clubs difficult for the average golfer to hit. A good example of one such club is prior art product I in the table of FIG. **30**. Prior art product I has achieved a small club 50 moment arm (CMA), but has done so at the expense of small blade length (BL) of 2.838 inches, a small heel blade length section (Abl) dimension of 0.863 inches. Thus, the present invention's increase in blade length (BL) and the minimum heel blade length section (Abl), while being able to produce 55 a high MOIy, or very low CG elevation, with a small club moment arm (CMA), is unique.

Both of these trends have ignored the changes found in the rest of the golf clubs in a golfer's bag. As will be discussed in detail further below, advances in driver technology and 60 hybrid iron technology have left fairway woods feeling unnatural and undesirable.

In addition to everything else, the prior art has failed to identify the value in having a fairway wood's engineered impact point (EIP) located a significant distance from the 65 origin point. Conventional wisdom regarding increasing the Zcg value to obtain club head performance has proved to not

recognize that it is the club moment arm (CMA) that plays a much more significant role in fairway wood performance and ball flight. Controlling the club moments arm (CMA) in the manner claimed herein, along with the long blade length (BL), long heel blade length section (Abl), while achieving a high MOIy, or low CG position, for fairway woods, yields launch conditions that vary significantly less between perfect impacts and off-center impacts than has been seen in the past. The present invention provides the penetrating ball flight that is desired with fairway woods via reducing the ball spin rate per degree of launch angle. The presently claimed invention has resulted in reductions in ball spin rate as much as 5 percent or more, while maintaining the desired launch angle. In fact, testing has shown that each hundredth of an inch reduction in club moment arm (CMA) results in a reduction in ball spin rate of up to 13.5 rpm.

In another embodiment of the present invention the ratio of the golf club head front-to-back dimension (FB) to the blade length (BL) is less than 0.925, as seen in FIG. 21. The table FIG. 31 is the table of FIG. 30 with two additional rows added to the bottom illustrating typical prior art front-toback dimensions (FB) and the associated ratios of front-toback dimensions (FB) to blade lengths (BL). In this embodiment, the limiting of the front-to-back dimension (FB) of the club head (100) in relation to the blade length (BL) improves the playability of the club, yet still achieves the desired high MOIy, or low CG location, and small club moment arm (CMA). The reduced front-to-back dimension (FB), and associated reduced Zcg, of the present invention also significantly reduces dynamic lofting of the golf club head. In FIG. **31** only prior art products P, Q, and T even obtain ratios below 1, nowhere near 0.925, and further do not obtain the other characteristics previously discussed. Increasing the blade length (BL) of a fairway wood, while decreasing the front-to-back dimension (FB) and incorporating the previously discussed characteristics with respect to minimum MOIy, minimum heel blade length section (Abl), and maximum club moment arm (CMA), simply goes against conventional fairway wood golf club head design and produces a golf club head that has improved playability that would not be expected by one practicing conventional fairway wood design principles. Reference to FIGS. 24, 25, and 26 illustrates nicely the unique geometric differences between the present embodiment and prior art fairway woods. In a further embodiment, such as that of FIG. 26, the face, sole, crown, and skirt define an outer shell that further defines a head volume that is less than 170 cubic centimeters

In yet a further embodiment a unique ratio of the heel blade length section (Abl) to the golf club head front-to-back dimension (FB) has been identified and is at least 0.32. The table shown in FIG. **32** replaces the last row of the table of FIG. **31** with this new ratio of heel blade length section (Abl) to the golf club head front-to-back dimension (FB), as well as adding a row illustrating the face closing moment (MOIfc). Prior art products O, P, Q, and T obtain ratios above 0.32, but are all low MOIy and low face closing moment (MOIfc) clubs that also fail to achieve the present invention's heel blade length section (Abl) value.

Still another embodiment of the present invention defines the long blade length (BL), long heel blade length section (Abl), and short club moment arm (CMA) relationship through the use of a CG angle (CGA) of no more than 30 degrees. The CG angle (CGA) was previously defined in detail above. Fairway woods with long heel blade length sections (Abl) simply have not had CG angles (CGA) of 30 degrees or less. Generally longer blade length (BL) fairway woods have CG locations that are further back in the golf club head and therefore have large CG angles (CGA), common for oversized fairway woods. For instance, the longest blade length (BL) fairway wood seen in FIG. **33** has a blade length (BL) of 3.294 inches and correspondingly has a CG angle (CGA) of over 33 degrees. A small CG angle 5 (CGA) affords the benefits of a golf club head with a small club moment arm (CMA) and a CG that is far from the origin in the X-direction. An even further preferred embodiment of the present invention has a CG angle (CGA) of 25 degrees or less, further espousing the performance benefits discussed 10 herein.

Yet another embodiment of the present invention expresses the unique characteristics of the present fairway wood in terms of a ratio of the club moment arm (CMA) to the heel blade length section (Abl). In this embodiment the 15 ratio of club moment arm (CMA) to the heel blade length section (Abl) is less than 0.9. The only prior art fairway woods seen in FIG. **34** that fall below this ratio are prior art products O and P, which fall dramatically below the claimed MOIy or the claim Ycg distance, the specified heel blade 20 length section (Abl), and prior art product O further has a short blade length (BL).

Still a further embodiment uniquely characterizes the present fairway wood golf club head with a ratio of the heel blade length section (Abl) to the blade length (BL) that is at 25 least 0.33. The only prior art product in FIG. **35** that meets this ratio along with a blade length (BL) of at least 3.1 inches is prior art product R, which again has a club moment arm (CMA) more than 17 percent greater than the present invention and thus all the undesirable attributes associated 30 with a long club moment arm (CMA) club.

Yet another embodiment further exhibits a club head attribute that goes against traditional thinking regarding a short club moment arm (CMA) club, such as the present invention. In this embodiment the previously defined trans- 35 fer distance (TD) is at least 1.2 inches. In this embodiment the present invention is achieving a club moment arm (CMA) less than 1.1 inches while achieving a transfer distance (TD) of at least 1.2 inches. Conventional wisdom would lead one skilled in the art to generally believe that the 40 magnitudes of the club moment arm (CMA) and the transfer distance (TD) should track one another.

In the past golf club design has made MOIy a priority. Unfortunately, MOIy is solely an impact influencer; in other words, MOIy represents the club head's resistance to twisting when a golf ball is struck toward the toe side, or heel side, of the golf club. The present invention recognizes that a second moment of inertia, referred to above as the face closing moment, (MOIfc) also plays a significant role in producing a golf club that is particularly playable by even 50 unskilled golfers. As previously explained, the claimed second moment of inertia is the face closing moment of inertia, referred to as MOIfc, which is the horizontally translated (no change in Y-direction elevation) version of MOIy around a vertical axis that passes through the origin. 55 MOIfc is calculated by adding MOIy to the product of the club head mass and the transfer distance (TD) squared. Thus,

MOIfc=MOIy+(mass*(TD)²)

The transfer distance (TD) in the equation above must be 60 converted into centimeters in order to obtain the desired MOI units of g*cm². The face closing moment (MOIfc) is important because is represents the resistance felt by a golfer during a swing as the golfer is attempting to return the club face to the square position. While large MOIy golf clubs are 65 good at resisting twisting when off-center shots are hit, this does little good if the golfer has difficulty consistently

bringing the club back to a square position during the swing. In other words, as the golf swing returns the golf club head to its original position to impact the golf ball the face begins closing with the goal of being square at impact with the golf ball. As MOIy increases, it is often more difficult for golfers to return the club face to the desired position for impact with the ball. For instance, the figures of FIGS. **18**(A), (B), (C), and (D) illustrate the face of the golf club head closing during the downswing in preparation for impact with the golf ball. This stepwise closing of the face is also illustrated in FIGS. **19** and **20**.

Recently golfers have become accustomed to high MOIy golf clubs, particularly because of recent trends with modern drivers and hybrid irons. In doing so, golfers have trained themselves, and their swings, that the extra resistance to closing the club face during a swing associated with longer length golf clubs, i.e. high MOIy drivers and hybrid irons, is the "natural" feel of longer length golf clubs. The graph of FIG. 37 illustrates the face closing moment (MOIfc) compared to club length of modern prior art golf clubs. The left side of solid line curve on the graph illustrates the face closing moment (MOIfc) of an average hybrid long iron golf club, while the right side solid line curve of the graph illustrates the face closing moment (MOIfc) of an average high MOIy driver. The drop in the illustrated solid line curve at the 43 inch club length illustrates the face closing moment (MOIfc) of conventional fairway woods. Since golfers have trained themselves that a certain resistance to closing the face of a long club length golf club is the "natural" feel, conventional fairway woods no longer have that "natural" feel. The present invention provides a fairway wood with a face closing moment (MOIfc) that is more in line with hybrid long irons and high MOIy drivers resulting in a more natural feel in terms of the amount of effort expended to return the club face to the square position; all the while maintaining a short club moment arm (CMA). This more natural feel is achieved in the present invention by increasing the face closing moment (MOIfc) so that it approaches the straight dashed line seen in FIG. 37 connecting the face closing moment (MOIfc) of the hybrid long irons and high MOIy drivers. Thus, one embodiment distinguishes itself by having a face closing moment (MOIfc) of at least 4500 g*cm², or at least 4250 g*cm² in low CG elevation embodiments. Further, this beneficial face closing moment (MOIfc) to club length relationship may be expressed as a ratio. Thus, in vet another embodiment of the present invention the ratio of the face closing moment (MOIfc) to the club length is at least 135, or at least 95 in low CG elevation embodiments.

In the previously discussed embodiment the transfer distance (TD) is at least 1.2 inches. Thus, from the definition of the face closing moment (MOIfc) it is clear that the transfer distance (TD) plays a significant role in a fairway wood's feel during the golf swing such that a golfer squares the club face with the same feel as when they are squaring their driver's club face or their hybrid's club face; yet the benefits afforded by increasing the transfer distance (TD), while decreasing the club moment arm (CMA), have gone unrecognized until the present invention. The only prior art product seen in FIG. 36 with a transfer distance (TD) of at least 1.2 inches, while also having a club moment arm (CMA) of less than or equal to 1.1 inches, is prior art product I, which has a blade length (BL) over 8 percent less than the present invention, a heel blade length section (Abl) over 21 percent less than the present invention, and a MOIy over 10 percent less than some embodiments of the present invention.

A further embodiment of the previously described embodiment has recognized highly beneficial club head performance regarding launch conditions when the transfer distance (TD) is at least 10 percent greater than the club moment arm (CMA). Even further, a particularly effective 5 range for fairway woods has been found to be when the transfer distance (TD) is 10 percent to 40 percent greater than the club moment arm (CMA). This range ensures a high face closing moment (MOIfc) such that bringing club head square at impact feels natural and takes advantage of the 10 beneficial impact characteristics associated with the short club moment arm (CMA) and CG location.

The embodiments of the present invention discovered that in order to increase the face closing moment (MOIfc) such that it is closer to a roughly linear range between a hybrid 15 long iron and a high MOIy driver, while reducing the club moment art (CMA), the heel blade length section (Abl) must be increased to place the CG in a more beneficial location. As previously mentioned, the present invention does not merely maximize MOIy because that would be short 20 sighted. Increasing the MOIy while obtaining a desirable balance of club moment arm (CMA), blade length (BL), heel blade length section (Abl), and CG location involved identifying key relationships that contradict many traditional golf club head engineering principles. This is particularly 25 true in an embodiment of the present invention that has a second moment of inertia, the face closing moment, (MOIfc) about a vertical axis through the origin of at least 5000 g*cm². Obtaining such a high face closing moment (MOIfc), while maintaining a short club moment arm (CMA), long 30 blade length (BL), long heel blade length section (Abl), and high MOIy involved recognizing key relationships, and the associated impact on performance, not previously exhibited. In fact, in yet another embodiment one such desirable relationship found to be an indicator of a club heads play- 35 ability, not only from a typical resistance to twisting at impact perspective, but also from the perspective of the ability to return the club head to the square position during a golf swing with a natural feel, is identified in a fairway wood golf club head that has a second moment of inertia 40 (MOIfc) that is at least 50 percent greater than the MOIy multiplied by seventy-two and one-half percent of the heel blade length section (Abl). This unique relationship is a complex balance of virtually all the relationships previously discussed. 45

The concept of center face progression (CFP) has been previously defined and is often thought of as the offset of a golf club head, illustrated in FIG. **14**. One embodiment of the present invention has a center face progression (CFP) of less than 0.525 inches. Additionally, in this embodiment the 50 Zcg may be less than 0.65 inches, thus leading to a small club moment arm (CMA). In a further embodiment, the present invention has a center face progression (CFP) of less than 0.35 inches and a Zcg is less than 0.85 inches, further providing the natural feel required of a particularly playable 55 fairway wood

Yet another embodiment of the present invention further characterizes this unique high MOIy long blade length (BL) fairway wood golf club having a long heel blade length section (Abl) and a small club moment arm (CMA) in terms ⁶⁰ of a design efficiency. In this embodiment the ratio of the first moment of inertia (MOIy) to the head mass is at least 14. Further, in this embodiment the ratio of the second moment of inertia, or the face closing moment, (MOIfc) to the head mass is at least 23. Both of these efficiencies are ⁶⁵ only achievable by discovering the unique relationships that are disclosed herein.

Additional testing has shown that further refinements in the CG location, along with the previously described combination of the small club moment arm (CMA) with the long blade length (BL) and the long heel blade length section (Abl) may exceed the performance of many of the high MOIy embodiments just disclosed. Thus, all of the prior disclosure remains applicable, however now the presently claimed invention does not focus on achieving a high MOIy, in combination with all the other attributes, but rather the following embodiments focus on achieving a specific CG location in combination with the unique relationships of small club moment arm (CMA), long blade length (BL), and long heel blade length section (Abl), already disclosed in detail, in addition to a particular relationship between the top edge height (TEH) and the Ycg distance.

Referring now to FIG. 10, in one embodiment it was found that a particular relationship between the top edge height (TEH) and the Ycg distance further promotes desirable performance and feel. In this embodiment a preferred ratio of the Ycg distance to the top edge height (TEH) is less than 0.40; while still achieving a long blade length of at least 3.1 inches, including a heel blade length section (Abl) that is at least 1.1 inches, a club moment arm (CMA) of less than 1.1 inches, and a transfer distance (TD) of at least 1.2 inches, wherein the transfer distance (TD) is between 10 percent to 40 percent greater than the club moment arm (CMA). This ratio ensures that the CG is below the engineered impact point (EIP), yet still ensures that the relationship between club moment arm (CMA) and transfer distance (TD) are achieved with club head design having a long blade length (BL) and long heel blade length section (Abl). As previously mentioned, as the CG elevation decreases the club moment arm (CMA) increases by definition, thereby again requiring particular attention to maintain the club moment arm (CMA) at less than 1.1 inches while reducing the Ycg distance, maintaining a moderate MOIy, and a significant transfer distance (TD) necessary to accommodate the long blade length (BL) and heel blade length section (Abl). In an even further embodiment, a ratio of the Ycg distance to the top edge height (TEH) of less than 0.375 has produced even more desirable ball flight properties. Generally the top edge height (TEH) of fairway wood golf clubs is between 1.1 inches and 2.1 inches.

In fact, most fairway wood type golf club heads fortunate to have a small Ycg distance are plagued by a short blade length (BL), a small heel blade length section (Abl), and/or long club moment arm (CMA). With reference to FIG. 3. one particular embodiment achieves improved performance with the Ycg distance less than 0.65 inches, while still achieving a long blade length of at least 3.1 inches, including a heel blade length section (Abl) that is at least 1.1 inches, a club moment arm (CMA) of less than 1.1 inches, and a transfer distance (TD) of at least 1.2 inches, wherein the transfer distance (TD) is between 10 percent to 40 percent greater than the club moment arm (CMA). As with the prior disclosure, these relationships are a delicate balance among many variables, often going against traditional club head design principles, to obtain desirable performance. Still further, another embodiment has maintained this delicate balance of relationships while even further reducing the Ycg distance to less than 0.60 inches.

As previously touched upon, in the past the pursuit of high MOIy fairway woods led to oversized fairway woods attempting to move the CG as far away from the face of the club, and as low, as possible. With reference again to FIG. **8**, this particularly common strategy leads to a large club moment arm (CMA), a variable that the present embodiment

seeks to reduce. Further, one skilled in the art will appreciate that simply lowering the CG in FIG. **8** while keeping the Zcg distance, seen in FIGS. **2** and **6**, constant actually increases the length of the club moment arm (CMA). The present invention is maintaining the club moment arm (CMA) at less 5 than 1.1 inches to achieve the previously described performance advantages, while reducing the Ycg distance in relation to the top edge height (TEH); which effectively means that the Zcg distance is decreasing and the CG position moves toward the face, contrary to many conven- 10 tional design goals.

As explained throughout, the relationships among many variables play a significant role in obtaining the desired performance and feel of a fairway wood. One of these important relationships is that of the club moment arm 15 (CMA) and the transfer distance (TD). The present fairway wood has a club moment arm (CMA) of less than 1.1 inches and a transfer distance (TD) of at least 1.2 inches; however in one particular embodiment this relationship is even further refined resulting in a fairway wood golf club having a 20 ratio of the club moment arm (CMA) to the transfer distance (TD) that is less than 0.75, resulting in particularly desirable performance. Even further performance improvements have been found in an embodiment having the club moment arm (CMA) at less than 1.0 inch, and even more preferably, less 25 than 0.95 inches. A somewhat related embodiment incorporates a mass distribution that yields a ratio of the Xcg distance to the Ycg distance of at least two, thereby ensuring the performance and feel of a fairway wood golf club head having a second moment of inertia (MOIfc) of at least 4250 30 g*cm². In fact, in these embodiments it has been found that a first moment of inertia (MOIy) about a vertical axis through the CG of at least 2000 g*cm², when combined with the claimed transfer distance (TD), yield acceptable second moment of inertia (MOIfc) values that provide a comfort- 35 able feel to most golfers. One particular embodiment further accommodates the resistance that modern golfers are familiar with when attempting to bring the club face square during a golf swing by incorporating a ratio of a second moment of inertia (MOIfc) to the club length that is at least 95. 40

Achieving a Ycg distance of less than 0.65 inches requires a very light weight club head shell so that as much discretionary mass as possible may be added in the sole region without exceeding normally acceptable head weights for fairway woods, as well as maintaining the necessary dura- 45 bility. In one particular embodiment this is accomplished by constructing the shell out of a material having a density of less than 5 g/cm³, such as titanium alloy, nonmetallic composite, or thermoplastic material, thereby permitting over one-third of the final club head weight to be discre- 50 tionary mass located in the sole of the club head. One such nonmetallic composite may include composite material such as continuous fiber pre-preg material (including thermosetting materials or thermoplastic materials for the resin). In yet another embodiment the discretionary mass is composed of 55 a second material having a density of at least 15 g/cm³, such as tungsten. An even further embodiment obtains a Ycg distance is less than 0.55 inches by utilizing a titanium alloy shell and at least 80 grams of tungsten discretionary mass, all the while still achieving a ratio of the Ycg distance to the 60 top edge height (TEH) is less than 0.40, a blade length (BL) of at least 3.1 inches with a heel blade length section (Abl) that is at least 1.1 inches, a club moment arm (CMA) of less than 1.1 inches, and a transfer distance (TD) of at least 1.2 inches. 65

A further embodiment recognizes another unusual relationship among club head variables that produces a fairway wood type golf club exhibiting exceptional performance and feel. In this embodiment it has been discovered that a heel blade length section (Abl) that is at least twice the Ycg distance is desirable from performance, feel, and aesthetics perspectives. Even further, a preferably range has been identified by appreciating that performance, feel, and aesthetics get less desirable as the heel blade length section (Abl) exceeds 2.75 times the Ycg distance. Thus, in this one embodiment the heel blade length section (Abl) should be 2 to 2.75 times the Ycg distance.

Similarly, a desirable overall blade length (BL) has been linked to the Ycg distance. In yet another embodiment preferred performance and feel is obtained when the blade length (BL) is at least 6 times the Ycg distance. Such relationships have not been explored with conventional fairway wood golf clubs because exceedingly long blade lengths (BL) would have resulted. Even further, a preferable range has been identified by appreciating that performance and feel become less desirable as the blade length (BL) exceeds 7 times the Ycg distance. Thus, in this one embodiment the blade length (BL) should be 6 to 7 times the Ycg distance.

Just as new relationships among blade length (BL) and Ycg distance, as well as the heel blade length section (Abl) and Ycg distance, have been identified; another embodiment has identified relationships between the transfer distance (TD) and the Ycg distance that produce a particularly playable fairway wood. One embodiment has achieved preferred performance and feel when the transfer distance (TD) is at least 2.25 times the Ycg distance. Even further, a preferable range has been identified by appreciating that performance and feel deteriorate when the transfer distance (TD) exceeds 2.75 times the Ycg distance. Thus, in yet another embodiment the transfer distance (TD) should be within the relatively narrow range of 2.25 to 2.75 times the Ycg distance for preferred performance and feel.

All the ratios used in defining embodiments of the present invention involve the discovery of unique relationships among key club head engineering variables that are inconsistent with merely striving to obtain a high MOIy or low CG using conventional golf club head design wisdom. Numerous alterations, modifications, and variations of the preferred embodiments disclosed herein will be apparent to those skilled in the art and they are all anticipated and contemplated to be within the spirit and scope of the instant invention. Further, although specific embodiments have been described in detail, those with skill in the art will understand that the preceding embodiments and variations can be modified to incorporate various types of substitute and or additional or alternative materials, relative arrangement of elements, and dimensional configurations. Accordingly, even though only few variations of the present invention are described herein, it is to be understood that the practice of such additional modifications and variations and the equivalents thereof, are within the spirit and scope of the invention as defined in the following claims.

We claim:

1. A golf club head comprising:

- (a) a face positioned at a front portion of the golf club head where the golf club head impacts a golf ball, wherein the face includes an engineered impact point (EIP) and a top edge height (TEH);
- (b) a sole positioned at a bottom portion of the golf club head;
- (c) a crown positioned at a top portion of the golf club head;

20

45

- (d) a skirt positioned around a portion of a periphery of the golf club head between the sole and the crown, wherein the face, sole, crown, and skirt define an outer shell that further defines a head volume, and wherein the golf club head has a rear portion opposite the face;
- (e) a bore having a center that defines a shaft axis (SA) which intersects with a horizontal ground plane (GP) to define an origin point, wherein the bore is located at a heel side of the golf club head and receives the shaft distal end for attachment to the golf club head, and ¹⁰ wherein a toe side of the golf club head is located opposite of the heel side;
- (f) a center of gravity (CG) located:
 - (1) vertically toward the top portion of the golf club head from the origin point a distance Ycg;
 - (2) horizontally from the origin point toward the toe side of the golf club head a distance Xcg that is generally parallel to the face and the ground plane (GP); and
 - (3) a distance Zcg from the origin toward the rear portion in a direction generally orthogonal to the vertical direction used to measure Ycg and generally orthogonal to the horizontal direction used to measure Xcg, wherein the Zcg distance is less than 0.65 25 inches;
- (g) a blade length (BL) of at least 3.1 inches when the blade length (BL) is measured horizontally from the origin point toward the toe side of the golf club head a distance that is generally parallel to the face and the 30 ground plane (GP) to the most distant point on the golf club head in this direction, wherein the blade length (BL) includes a heel blade length section (Abl) measured in the same direction as the blade length (BL) from the origin point to the engineered impact point 35 (EIP), and wherein the heel blade length section (Abl) is at least twice the Ycg distance; and
- (h) a transfer distance (TD) that is at least 2.25 times the Ycg distance.

2. The golf club head of claim **1**, wherein the heel blade 40 length section (Abl) is less than 2.75 times the Ycg distance.

3. The golf club head of claim **2**, wherein the Ycg distance is less than 0.60 inch.

4. The golf club head of claim **3**, wherein the Ycg distance is less than 0.55 inch.

5. The golf club head of claim **3**, wherein the heel blade length section (Abl) is at least 1.1 inches.

6. The golf club head of claim **5**, wherein the transfer distance (TD) is less than 2.75 times the Ycg distance.

7. The golf club head of claim 5, wherein the transfer 50 distance (TD) is at least 1.2 inches.

8. The golf club head of claim **5**, wherein a CG angle (CGA) is no more than 25 degrees.

9. The golf club head of claim **8**, wherein a ratio of the Xcg distance to the Ycg distance is at least two. 55

10. The golf club head of claim 9, having a second moment of inertia (MOIfc) about a vertical axis through the origin of at least $4500 \text{ g}^{*}\text{cm}^{2}$.

11. The golf club head of claim **10**, wherein a ratio of the second moment of inertia (MOIfc) to the club head mass is 60 at least 23.

12. The golf club head of claim 10, wherein the second moment of inertia (MOIfc) is at least $5000 \text{ g}^{*}\text{cm}^{2}$.

13. The golf club head of claim $\mathbf{8}$, wherein the blade length (BL) is at least 6 times the Ycg distance.

14. The golf club head of claim **13**, wherein the blade length (BL) is less than 7 times the Ycg distance.

15. The golf club head of claim **1**, wherein a ratio of the Ycg distance to the top edge height (TEH) is less than 0.40.

16. The golf club head of claim **1**, wherein at least a portion of the club head has a density of at least 15 g/cc.

17. The golf club head of claim 1, wherein at least a portion of the outer shell has a density of less than 5 g/cc.

18. The golf club head of claim 1, wherein the club head has a volume of less than 250 cc.

19. A golf club comprising:

- (A) a shaft having a proximal end and a distal end;
- (B) a grip attached to the shaft proximal end; and
- (C) a golf club head having:
 - (i) a face positioned at a front portion of the golf club head where the golf club head impacts a golf ball, wherein the face has a loft, and wherein the face includes an engineered impact point (EIP) and a top edge height (TEH);
 - (ii) a sole positioned at a bottom portion of the golf club head;
 - (iii) a crown positioned at a top portion of the golf club head;
 - (iv) a skirt positioned around a portion of a periphery of the golf club head between the sole and the crown, wherein the face, sole, crown, and skirt define an outer shell that further defines a head volume, and wherein the golf club head has a rear portion opposite the face;
 - (v) a bore having a center that defines a shaft axis (SA) which intersects with a horizontal ground plane (GP) to define an origin point, wherein the bore is located at a heel side of the golf club head and receives the shaft distal end for attachment to the golf club head, and wherein a toe side of the golf club head is located opposite of the heel side;
 - (vi) a center of gravity (CG) located:
 - (a) vertically toward the top portion of the golf club head from the origin point a distance Ycg;
 - (b) horizontally from the origin point toward the toe side of the golf club head a distance Xcg that is generally parallel to the face and the ground plane (GP); and
 - (c) a distance Zcg from the origin toward the rear portion in a direction generally orthogonal to the vertical direction used to measure Ycg and generally orthogonal to the horizontal direction used to measure Xcg, wherein the Zcg distance is less than 0.65 inches;
 - (vii) a blade length (BL) of at least 3.1 inches when the blade length (BL) is measured horizontally from the origin point toward the toe side of the golf club head a distance that is generally parallel to the face and the ground plane (GP) to the most distant point on the golf club head in this direction, wherein the blade length (BL) includes a heel blade length section (Abl) measured in the same direction as the blade length (BL) from the origin point to the engineered impact point (EIP), and wherein the heel blade length section (Abl) is at least twice the Ycg distance;
 - (viii) a transfer distance (TD) that is at least 2.25 times the Ycg distance; and

(D) wherein the golf club has a club length.

20. The golf club of claim 19, having a second moment of
inertia (MOIfc) about a vertical axis through the origin of at
least 4500 g*cm² and wherein the Ycg distance is less than
0.60 inch.

21. The golf club of claim **20**, wherein the blade length (BL) is at least 6 times the Ycg distance, and a ratio of the second moment of inertia (MOIfc) to the club length is at least 135.

22. The golf club of claim **20**, wherein a ratio of the 5 second moment of inertia (MOIfc) to the club head mass is at least 23 and a ratio of the Xcg distance to the Ycg distance is at least two.

23. The golf club of claim **21**, wherein the club length is at least 41 inches and no more than 45 inches.

* * * * *